
Python Meetup BCN - Xavier Orduña - Feb 2025

Jupyter Notebooks based
Reporting
How to use Jupyter Notebooks to deliver fancy html reports
and give freedom to the user

About me
• I learned to code in the last century (HTML, Visual Basic …)

• Computer Science at UPC

• Founded DEXMA (2007 - 2015)

• Data engineering freelance (TESCO, ABI, Moonpay, …) (2015 - 2021)

• Team lead at Circutor (2021 - present)

• Obsessed about automation, product and platform!

Get back 8 years

Slack Bot

Datalake

Data Scientist

Account Manager

Problems
• Data scientist used to create reports (xls) and charts (png) using Jupyter

Notebook

• Development cycle was very slow

• We needed a way to run isolated “semi trusted code”

Solution

Slack Bot

(*) sales (*) from (*) to (*)

(*) delivery (*) from (*) to (*)

Technical solution

API Celery Job

IPython Kernels in queue

stream
img/png

files sent back to Slack using injected calls to API

MISSING PYTHON NOTEBOOK

Notebook

Repository

Amazon ECS

messages and images

Remote code

execution

redis

Circutor Architecture

IOT Platform for a variety of Hardware for enegy efficency

Circutor Needs
• SaaS IOT Platform

• How to customize SaaS for industrial customers?

• Development lifecycle

• Developer independency

• Self contained

• Need to run “untrusted” code

Ingredients
• Python Notebook

• Jinja2 HTML Template

Examples

Technical solution

API
Celery Job

Run Kernel

K8S API

Go API

Get Data via API with temporary token

Cell Execution

Get files

DATA

Report Ready
Render template

with output

Isolated pod

Steps
• Create report file

• Get Notebook

• Start Pod

• Get Kernel file

• Connect to pod

• Execute code

• Get output

• Render template

• Push report

- Create temporal Token for each report file

- Set parameters:

- language

- asset

- from (day)

- to (day)

Steps
• Create report file

• Get Notebook

• Start Pod

• Get Kernel file

• Connect to pod

• Execute code

• Get output

• Render template

• Push report

- languages

- en/LC_MESSAGES/messages.mo

- ca/LC_MESSAGES/messages.mo

- messages.pot

- report.ipynb

- template.html

- config.json

Steps
• Create report

• Get Notebook

• Start Pod

• Get Kernel file

• Connect to pod

• Execute code

• Get output

• Render template

• Push report

Kernel Image

Steps
• Create report

• Get Notebook

• Start Pod

• Get Kernel file

• Connect to pod

• Execute code

• Get output

• Render template

• Push report

Kernel File (secret, ports, etc ..)

Steps
• Create report

• Get Notebook

• Start Pod

• Get Kernel file

• Connect to pod

• Execute code

• Get output

• Render template

• Push report

ZeroMQ protocol

Comunication with kernel is done via 5 channels and
JSON based messages through ZeroMQ

Channel Type Purpose

Shell request-reply To run code

Control request-reply Like shell, but for control
orders like stop the kernel

IOPub Publish-Subscribe To publish results, status
messages and code output

Stdin request-reply To control user input

Heartbeat ping-reply To check that the kernel is
alive

Steps
• Create report

• Get Notebook

• Start Pod

• Get Kernel file

• Connect to pod

• Execute code

• Get output

• Render template

• Push report

Steps
• Create report

• Get Notebook

• Start Pod

• Get Kernel file

• Connect to pod

• Execute code

• Get output

• Render template

• Push report

Before executing any cell, we look for special “TAGS” or
comments

#NOEXECUTE

This cell is skipped (used for local development)

#ENVIRONMENT

Looks for from_day = “$FROM_DAY” and replaces
$FROM_DAY for the value defined for this particular
execution

Steps
• Create report

• Get Notebook

• Start Pod

• Get Kernel file

• Connect to pod

• Execute code

• Get output

• Render template

• Push report

Getting output

- last cell of any report should be a code to write a file
named output.json

- this file should contain all data that needs to be
rendered in HTML template

- Images are passed as base64 strings

Steps
• Create report

• Get Notebook

• Start Pod

• Get Kernel file

• Connect to pod

• Execute code

• Get output

• Render template

• Push report

Celery Job tar cf - <source>

stdin

exec

websocket

Steps
• Create report

• Get Notebook

• Start Pod

• Get Kernel file

• Connect to pod

• Execute code

• Get output

• Render template

• Push report

Render Template

- template is opened

- template is rendered with loaded output.json

Translations

- language is set in report file (lang)

- HTML has support for gettext translations:

- {{ _(`My Comment’) }}

Steps
• Create report

• Get Notebook

• Start Pod

• Get Kernel file

• Connect to pod

• Execute code

• Get output

• Render template

• Push report

Final steps

- Push report to S3

- Set report file status as “completed” or “error”

- In case of error, add Trace

- Kill kernel and ensure pod is deleted

Local Development
• Set static data with #NoExecute

• Render template example with
#NoExecute

• Use regular Jupyter Notebook as
any other analysis

Tips and tricks
• Timeout is very important

• Set limits for memory and CPU

• Capture exception trace from kernel and give it back to user

• Add as much log as possible

• Make easy for customer to debug

Examples

Thank you :)
xavier.orduna@gmail.com

www.maulabs.cat

Any question?

